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prior probability or likelthood?

* Coverage of Cousins + Highand Limits
— mixed Freguentist + Bayesian

* Dependence of Bayesian UL on
— Signal “noninformative’ priors

— Efficiency informative priors
« and comparison with C+H limits

— background informative priors
o Summary and Op/Ed Pages



The Problem

e Observation: see k events

* Poisson variable:
—expected meanis stb  (signal + background)
—S=eds

o efficiency ~ Luminosity ~ cross section
— “crosssection” s really cross section ” branching ratio

e Calculate U, 95% upper [imiton's
— function of k, b, and uncertainties d,,, dg, d

— focus on upper limits: sear ches



Some typical casesfor
Calculation of 95% Upper Limits

k=0, b=3 The Karmen Problem
k=3, b=3 Standard Model Rules Again
k=10, b=3 The Levitation of Gordy Kane?

*seelng No excess, we proceed to
set an upper limit...”



The 95% Solution:

Reverend Bayes to the Rescue
Why? He appealsto our theoretical side

from statistics, we want “the answer”; as close as it gets?
Why? to handle nuisance parameters

Name your poison

Tincture of Bayes
Cousins and Highland treatment:
* Frequentist signals+ Bayesian nuisance
Bayes Full Strength

The D@ nostrum:
Both signal and nuisance parameters Bayesian



Cousins & Highland

Trying to make everyone happy makes no one happy.
Not even Bob.

Treat signal in Frequentist fashion (counts)
Bayesian treatment of nuisance parameters

modifies probabilities entering signal distribution
“weighted average” over degree of belief in unknown parameters
Nota Bene
Thisishow every physicist | know instinctively
approachesthisproblem. It'sthe“natural” way,
particularly when writing a Monte Carlo



C+H Coverage Monte Carlo:
b=0; sensitivity uncertainty

* Fix true sengitivity, s in outer loop
sweep through parameter space

find % of experiments with limitsincluding S at each point

e do MC experiments at each value

pick observed value for sensitivity, k
calculate limit based on these

seeif limit coverstruevalue of S
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Results for C+H Coverage

Failsto cover for large cross section and
small efficiency.

Not too surprising

a count limit s¥ could be due to any value of
s sinces” = ess
if sensitivity small, would need ahuge s

Remember, limit ons must bevalid for

any sensitivity--no matter how improbable
coverage handles statistical fluctuations only



U = Bayes 95% Upper Limits
Credible Interval

K = number of events observed

0 = expected background

Defined by integral on posterior probability
Depends on prior probability for signal

now to express that we don’t know If It exists,
but would be willing to believe it does?

Thisisthe Faustian part of the bargain!
Posterior: compromise likelihood with prior




Expected coverage of Bayesian intervals

e Theorem:<coverage> = 95% for Bayes 95% interval
< > = average over (possible) true values weighted by prior
e Frequentist definition Is minimum coverage for
any value of parameter (especially the true one!)

Not average coverage

o Classic tech support: precise, plausible, misieading
If true for Poisson, why systematically under cover?
Because k small isinfinitely small part of [0,¥ ]

but works beautifully for binomial (finite range)

e coverage varies with parameter but averageisright on
— “obvious’ if you do it with flat prior in parameter




The sadness of Fred James:
JIM, HAVE YOU GONE ASTRAY?

e | am indeed seen to worship at
Reverend Bayes' establishment

* |'m not afully baptized member
— sorry Harrison, not that you haven't tried!

o A skeptical inquirer...or areluctant convert?

Attraction of treating systematicsis great
|s accepting a Prior (he's uninformative!) too high a price?

A solution for the tepid?

Can we substitute convention for conviction?
Either one should be examined for its conseguences!




Candidate Signal Priors

Flat up to maximum M (e.g. S+o7)
— (our recommendation--but not invariant!)
—aconvention for BR"™ cross section
1/Os (Jeffreys: reparameterization invariant)
relatively popular “default” prior
1/s (one of Jeffreys recommendations)
get expected posterior mean
limit invariant under power transformation
e  notsingular at s=0
Bayes for combining with k=0 prev expt,
a = relative sensitivity to this experiment



Plkg = 0|6, I} x P{o|I) ex
Plelia =010 = T4oP (i = U, Ty x PTT) ~ [do 2 (A1

where 57 = oggly and we have used %‘Lﬂ = 1. Cancelling constants, and changing the

intepration variable to sy , we find
Plolk=01)= L™ (A2)

Now consider combining this experiment with a subsequent expariment, with different, but
again perfectly known, efficiency, luminesity, and background ¢, £, b. The patural Bayesian
method is to use the posterior for & from the first experiment as the prior for the second
gxperiment. For the second experiment we write the posterior probahility for &, with &

obsarved events as

{5 + b)*
k!

Plolk,I) x P{k,o, I} x Plo|l}=¢&"* Lge™" (A3)

using & = oell. Now we write 5p in terms of & by recopnizing

5g = oeghig = UFL% = s% = as (Ad)
* *
Plolk, I} x E_'{S + ) e ™ = F_'—{S + 8 gl {A6)

K ’ &
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Power Family s° Results (d,=0)

Theflat prior isnot “special” (stationary)
But if b=0, Bayes UL = Frequentist UL ® coverage
but lower limit would differ

1/Cs gives smaller limit (more weight to s=0)
— less coverage than flat (though converges for k® ¥)
1/s givesyou O upper limitif b>0
too prejudiced towards O signal!
More p dependence for k=0 than k=3 or k=10
flat (p=0) to 1/CGs gives 36%, 26% , 6%
data able to overwhelm prior (b=3)



Bayesian 95% Upper Limit for k=0, b=3
Dependence on Prior
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Fractional Bayesian Limit change vs. parameter of prior
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Bayesian 95% Upper Limit:
Dependence on Exponential Prior

a, coefficient in exponential exp (as)



Exponential Family Results
(d,=0)

Peak at s=0 pulls limit lower than flat prior

effects larger than /Gs vs. flat: equivalent to data

"> gives you 1/2 the limit of flat (a=0) for k=0:
combined 2 equal experiments

biggest fractional effectson k=10 (=1/2.5)

because disagrees with previous k=0 measurement

opposite tendency of power family
k=10 least dependent on power



Dependence on Efficiency | nformative Prior
(representation of systematics)

Input: estimated efficiency and uncertainty
n° uncertainty/estimate
“efficiency” isreally e/ (anuisance parameter)

Consider forms for efficiency prior

Expect: less fractional dependence on form of prior
e than on signal prior form
* because of the constraint of the input: informative

study using flat prior for cross section, do=0
Warning: s=eZ” s (multiplicative form)
limit in s could mean low efficiency or highs



Expressing €+de
ho dee

e “obvious’ Truncated Gaussian (Normal)

model for additive errors
we recommend(ed)
truncate so efficiency 2 0

e Lognormal (GaussaninlLne)
model for multiplicative errors

e Gamma (Bayes conjugate prior)
flat prior + estimate of Poisson variable

e Beta (Bayes Conjugate prior)
flat prior + estimate of Binomial variable



SONCE

For the purpases of this section, it is convenient to define a scaled sensitivity variable
b =eL/eh (6.9)

where ¢ = 1+ #. In this spirit, we will nse 5 to parameterize the informative prior for ¢,
rather than adjusting the posterior mean and rms of this distribution to precisely match
the estimates. Without lass of generality, we can further consider unit expected sensitivity
e = 1, so that 8 = Lo = f,En;bo = ¢ and we can easily compare numerical values of the
upper limits with other results. In the usual fashion, the posterior probability for the cross

section will be given by

Plolk) « P(o) [ dsP(k|go+B)P(8]n) (6.10)

TGouss{oln) = ﬁ{ﬁp—% (%) (6.11)
1 1 5

INor(|n) = mﬂp—i[]ﬂ ¢/n) (6.12)

Gamma(g|n) « ¢/7 e 9 (6.13)



F[!'.I 2 h) Fﬂ—l
L{a)C(8)

The estimate efficiency and uncertainty are assumed to have come from ¢ = K/N, the

Beta(en,b) = (Tt (6.14)

fraction of successes, and &, = % = +/¢(1 — €)/N. From these, the parameters can be
dednced by

N =&(1-8)/& = (1-8)/{5") (8.15)
and {nate the convergence to the Poisson case for € — 0)

K=¢N=(1-8/q9 (6.16)

resulting in

n=1+K=(1-8/ (6.17)

b=1+N—-K=1+(1/e-1)/(1— &)/ (6.18)
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95% Cradifile Limit

95% Credible limit for various fractional resolution
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Results for Truncated Gaussian
A bad choice, especialy if h > .2 or so
o cutoff-dependent (MC: 4 sigma; calc .1<e>)
Otherwise depends on M, range of prior for s
« MC of course cranks out some answer
— dependent on luck, and cutoffs of generators

e WHY!? (same problem as with Coverage)
— Can’t set limit If possibility of no sensitivity
Probability of e=0 awaysfinite for atruncated Gaussian
with flat priorins, giveslong tail ins posterior
Bayestakesthisliterally:

U reflects heavy weighting of large cross section!
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Results for alternatives
ALL have P(e=0) = O naturally

Lognormal, beta, and gamma
not very different (as expected--infor mative)
opinion: compar ableto “ choice of ensemble”

Not a Huge effect:
U(h)/U(0) <1+h uptoh ~1/3

L ognormal, Gamma can be expressed as
efficiency scaledto 1.0  (so can Gaussian)

beta requires absol ute scale (1-€)’



Informative Prior O 3
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Results, compared with
C+H (mixed Freguentist-Bayes)

e Truncated Gaussian well-behaved for C+H
no flat prior to compound with P(e=0) >0 ?
Fairly close to Bayes Lognormal

e C+H Limitsdepend on form of

Informative prior MORE than Bayes
L ognormal, gamma C+H lower than Bayes!
e C+H limitslower than Bayes limits

Which is“better”? coverage study?
C+H Gaussian undercoversfor small e (® large s)



Dependence on
Background Uncertainty

o Useflat prior, no efficiency uncertainty

e Usetruncated Gaussian to represent <b>=db
But isn't that a disaster? No--
additive is very different from multiplicative

ess +b
behavior at b=0 not special



Bayesian Upper Limit Dependence on Background Uncertainty
Truncated Gaussian Background Model
(k=3, b=3)
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Background Prior Results

e Resault: very mild dependence on db/b
< 10% change up to db/b = .66
most sensitive for k=3, b=3; k=1, b=3
absolute maximum: set b=0 20-40% typically
set b=0: force Freguentist coverage?

* No need to consider more complex models



Paper In preparation

 With Harrison Prosper and Marc Paterno
coverage calculation: more DA help

e Thanksto Louis Lyons for the prod to finish

— and a 2nd chance at understanding all this
* only 1 hour jet lag, maybe I'll be awake

e Poisson, Fisher....



Summary
(out of thingsto say)

Cases studied: b=3, k=0,3,10 mostly
studies changed one thing at atime

 All Bayes upper limits seen to
monotonically increase with uncertainties

(couldn’t quite prove:
Goedd’s Theorem for Dummies)
Hello PDG/RPP
nuisance effects 15% or so--please advise us
Ignoring them gives too-optimistic limits




Signal Prior Summary

Flat signal prior a convention
=0, h=0 matches Frequentist upper limit
we still recommend it
careful it’s not normalized
flat vs 1/Gs matter s at 30% |evel when setting limits
So publisn what you did!
Enough info to deduce NV= sV/<e/> at one point

can see if method or results differ
how about posting limits programs on web?

exponential family actually is a strong opinion (=data)



|nformative Prior Summary
Can't set limit if possibility of no sensitivity
o C+H mixed prescription doesn’t cover

— how well does Bayes do? (“better”?)

e Efficiency informative prior mattersin Bayesian
at alevel of 10% differencesif you avoid Gaussian
Prefer Lognormal over Truncated Gaussian
Keep uncertainty under 30% (large, ill-defined!)

e limit grows 20-30% for 30% fractional error in efficiency
 growth worse than quadratic

Bayesian upper limits larger than C+H; more similar
Publish what you did

« Background uncertainty weaker effect than efficiency
— typically < 15% even at db/b=1




|s 20% difference in limits

worth areligiouswar ...?
(less of aproblem if we actually find something!)

o Hats Prior broadly useful in counting expts?

e Set limits on visible cross section sY(Q)
signal MC for e ()
stays as close as we can get to raw counts
here is where scheme-dependence hits; it’s not too bad...

resolution corrections, prior dependence ~ 20-30% or less

 |nterpret exclusion limitsfor Q:

compare sV to s(q)
|F steep parameter dependence: |ess scheme-dependence

In limits for q than sY(q)...



